NZXT Kraken X62 All-in-One CPU Liquid Cooler Review

Author:Marc Adams

Editor:Kyle Bennett

Date: Wednesday, May 10, 2017

With today's NZXT Kraken review we step up the performance ladder and review its X62 model AIO CPU Cooler. As NZXT spells out on it website, and it is not modest about it, saying that the new Kraken series "have been redesigned to bring you the greatest experience in liquid cooling, all backed by an industry-leading 6-year warranty."


If there is one company that has fully embraced water cooling for PC enthusiasts it’s NZXT. While it may not have the longest lineage of creating water cooling products, it has made the most of the past four year. Starting with the original X40 series and X60 series way back in 2013, NZXT has been committed to creating the best All-In-One for users at every level. We have been reviewing NZXT products, most cases back in the "old days" of 2012, but as you can see on this page, NZXT has racked up a good bit of HardOCP awards.

Fast forward to 2017 and NZXT’s commitment has only strengthened. And what better way to show that commitment than to produce an AIO that utilizes one of the industry's biggest radiators, and pairs it to some of the largest fans. If NZXT stopped there it would have a decent AIO on its hands but "decent" does not cut it in this market. NZXT has added full software control, from the pump to the fans, and also included a slick "infinity design" on the CPU block that is hard not like, even in this day of RGB THE WORLD marketing. To say NZXT brought out the its big guns would be an understatement and the time for statements is over. So let’s get to it shall we.

System Setup

Today's review takes place on our fourth generation [H]ard platform. The test bed consists of the ASUS Z87-Deluxe motherboard, eight gigabytes of Corsair 1600 MHz DDR3 RAM and the Intel Core i7-4770K.

Test Methods


The biggest change you will notice is the removal of hardware testing. In recent years, Intel has shifted its methods of testing to software based and so we find it acceptable to do the same.


Once again we have an integrated GPU in our processor which alleviates the need for a discrete one. With the removal of a discrete GPU comes the advantage of not having an additional variable to account for.

The iGPU will not create any anomalies in our testing as long as we practice consistent testing methods.


Corsair was kind enough to provide us with its Carbide series chassis. It provides excellent airflow and interior space and is a good reflection on current case design.

Thermal Paste

Noctua\\'s NT-H1 thermal paste was selected as the thermal interface material (TIM) of choice for a few key reasons. The thermal paste has been shown to provide excellent thermal conductivity allowing the heat sinks to better do its job. There is no observed curing time. That is, performance does not get any better over time. Any curing time could have introduced variables into the equation causing at best dubious results and at worst unreliable ones.


Ambient temperature will be kept at 25C for the duration of the tests and measured with a MicroTemp EXP non-contact infrared thermometer and cross referenced with the Sperry Digital 4 Point thermometer. Any variance greater then 0.2C will halt the testing until temperatures return within spec for fifteen minutes.


Idle temperatures will be recorded after a twenty minute period of inactivity. Any fluctuation during the last sixty seconds will reset the timer for an additional five minutes.


Load temperatures will be recorded after a twenty minute period for air cooled systems, and thirty minutes for liquid cooled systems, at 100% load. To obtain this load we will be using AIDA64 Extreme Edition v3.00.2500. This places an even greater load on the CPU than before and includes some benefits. Because the load is so extreme we see the temperature vary wildly from 72C to 86C in some instances. To get an accurate reading we will utilize AIDA64’s ability to average the temperature over time. Given twenty/thirty minutes at 100% load we arrive at a temperature that accurately represents our heatsink’s performance.


Sound levels will be measured with a Reliability Direct AR824 sound meter from a distance of four feet away. With everything turned off and the room completely silent the meter registered a sound level of 38dB(A). This is a very quiet room where a simple pin drop could be heard. All sound measurements are recorded in the very late evening to further reduce any ambient noise.